
LOYOLA COLLEGE (AUTONOMOUS) CHENNAI – 600 034

U.G. DEGREE EXAMINATION – **ALLIED**

UMT2AR01 - MATHEMATICS FOR CHEMISTRY I

		5-05-2025 Dept. No. Max. : 100 Marks											
Time: 09:00 AM - 12:00 PM													
CECTION A 1/1 0 1/2 (CO1)													
	SECTION A - K1 & K2 (CO1)												
Q.No	Levels	Answer ALL the Questions $(10 \times 2 = 20)$											
1	-	State Cayley Hamilton theorem. Examine the derivatives of $w^2 + 2ainw + 2a^2$											
2	-	Examine the derivatives of $x^2 + 2sinx - 3e^x$ Evaluate $\int xe^{3x}dx$.											
3	K1												
4		Tabulate the forward difference table for the following data:											
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$											
		y 1 3 8 16											
5		Write the Spearman's formula for rank correlation coefficient											
6		Write the Spearman's formula for rank correlation coefficient. Classify symmetric and skew symmetric matrices.											
7		If $y = cosx$, express that $y + y_2 = 0$											
8	K2	Describe integration by parts.											
9		Differentiate interpolation and extrapolation											
10		Explain the concept of regression.											
10		SECTION B – K3 & K4 (CO2)											
		Answer ALL the Questions $(4 \times 10 = 40)$											
11		· /											
11		Using Cayley-Hamilton theorem, find A^{-1} given that $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix}$.											
		\1 1 2/											
		[OR]											
12													
	K3	If $u = \log(\tan x + \tan y + \tan z)$, then show that $\sin 2x \frac{\partial u}{\partial x} + \sin 2y \frac{\partial u}{\partial y} + \sin 2z \frac{\partial u}{\partial z} = 2$.											
13		Using partial fraction method, compute $\int \frac{2x+3}{(1-x^2)(1+3x)} dx$.											
		[OR]											
14		Calculate the standard deviation for the following data 14, 22, 9, 15, 20, 17, 12, 11.											
15		$\begin{pmatrix} -1 & 2+i & 5-3i \end{pmatrix}$											
		If $A = \begin{pmatrix} -1 & 2+i & 5-3i \\ 2-i & 7 & 5i \\ 5+3i & -5i & 2 \end{pmatrix}$, show that A is Hermitian and iA is skew Hermitian.											
	K4	5+3i-5i 2 / [OR]											
16		A recruiting agency shortlisted 10 candidates for final selection they were examined in written and											
10		oral communication skills. They were ranked as follows:											
		Written skill 8 7 2 10 3 5 1 9 6 4											
		Oral skill 10 7 2 6 5 4 1 9 8 3											
	Analyse whether there is any correlation between the written and oral communication												
		shortlisted candidates.											

17		Find the equation of the tangent to the parabola $y^2 = 4ax$ at (x_1, y_1) .												
		[OR]												
18		Using Lagrange's interpolation formula, evaluate $y(10)$ from the following table:												
		x	5	6	9	11								
		у	12	13	14	16								
							ı							
	SECTION C – K5 & K6 (CO3)													
	Ansv	Answer ALL the Questions $(2 \times 20 = 40)$												
19		Discover the characteristic roots and their associated characteristic vectors for the matrix												
	K5	$\begin{pmatrix} 3 & 1 & 4 \\ 2 & 3 & 4 \end{pmatrix}$												
		$A = \begin{pmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{pmatrix}.$												
		(O 0 5)												
20		From the f	ollowir	ng tab	ole of h	alf-y	early pren		r policies	maturing a	t diffe	erent ages, estimate		
		the premiu		_		•	• 1		1	υ		8 ,		
		Age x:		15		50		55		60		65		
		Premium	y: 1	14.54	4	96	5.16	83.32		74.48		68.48		
21	K6	(a) If $r^2 = x^2 + y^2$ then formulate that $\frac{\partial^2 r}{\partial x^2} + \frac{\partial^2 r}{\partial y^2} = \frac{1}{r} \left[\left(\frac{\partial r}{\partial x} \right)^2 + \left(\frac{\partial r}{\partial y} \right)^2 \right]$.												
		(b) Evaluate $\int \frac{dx}{x^2 + 2x + 5}$. (12+8)										(12+8)		
				2,0 . 0				[OR]						
22		Using Karl	l Pearso	on's r	nethod	, esti	mate the o	coefficie	ent of corre	elation for	the fo	llowing heights (in		
		inches) of fathers (x) nd their son's (y).												
		X	65	6	66	67	7 6	57	68	69	70	72		
		Y	67	ϵ	58	65	5 6	58	72	72	69	71		
									<u>-</u>					